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Abstract. The Heavy Fermion state in UPd2Al3 may be approximately described by a dual model where
two of the three U-5f electrons are in a localized state split by the crystalline electric field into two
low lying singlets with a splitting energy ∆ ' 6 meV. The third 5f electron has itinerant character
and forms the Heavy Electron bands. Inelastic neutron scattering and tunneling experiments suggest
that magnetic excitons, the collective propagating crystal field excitations of the localized 5f electrons,
mediate superconducting (sc) pairing in UPd2Al3. A theory for this novel mechanism is developed within a
nonretarded approach. A model for the magnetic exciton bands is analyzed and compared with experiment.
The sc pair potential which they mediate is derived and the gap equations are solved. It is shown that this
mechanism favors an odd parity state which is nondegenerate due to the combined symmetry breaking by
the crystalline electric field and the AF order parameter. A hybrid model including the spin fluctuation
contribution to the pairing is also discussed.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 74.20.Rp Pairing
symmetries (other than s-wave)

1 Introduction

Among the uranium-based Heavy Fermion (HF) super-
conductors [1] (sc) unconventional behaviour is the rule
rather than the exception. In the canonical intermetallic
U-compounds one observes orbitally degenerate sc states
with associated double transition [2] and two upper crit-
ical field curves as in the case of UPt3 [3], furthermore
coexistence and competition of different unconventinal sc
states with a SDW-like state in the U1−x,ThxBe13 was
reported [4]. In addition URu2Si2 shows superconductiv-
ity embedded in a region with a yet undetermined hidden
order parameter [5]. In all these cases, when antiferromag-
netism (AF) is observed it has no well defined long range
order and is characterized by a very small moment size of
order 10−2µB or less. The situation is distinctly different
in the compound UPd2Al3 [6]. Its normal state is char-
acterized by a specific heat γ-value of 120 mJ/mole K2

much smaller than observed in the previous compounds,
it is therefore of only moderate HF character and is super-
conducting below Tc = 1.8 K. On the other hand it has
long range AF order below TN = 14.3 K with much larger
moments of almost atomic like size with µ = 0.85µB.
This indicates that in addition to the itinerant electrons
there must be nearly localized 5f -electrons present which
has recently also been proposed for UPt3 [7]. They re-
sult from the 5f2 configuration of the U4+ ionic species
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which is the dominating one in UPd2Al3 [8]. This is sup-
ported by the temperature dependent susceptibility which
shows an extremely strong hexagonal ac-anisotropy with
an almost constant χc and a much larger χa(T ) which is
strongly temperature dependent with a typical behaviour
known from crystalline electric field (CEF)-split localized
5f states with a singlet-(nonmagnetic) ground state and a
first excited state at an energy estimated as ∆ ' 6 meV.
Knight shift analysis in the normal state obtained from
µSR-experiments confirm the presence of localized 5f mo-
ments [9]. Since the CEF ground state is a singlet the AF
order must be of the induced moment type, i.e. due to
mixing with the first excited CEF state caused by the
inter-site exchange.

The most direct confirmation for this dual nature of
5f -electrons in UPd2Al3 is obtained from inelastic neu-
tron scattering experiments which have been able to iden-
tify the collective propagating excitations that originate
in CEF excitations of energy ∆ and are broadened into a
dispersive band usually termed ‘magnetic excitons’ due to
the action of the intersite exchange. These modes extend
up to 8 meV and for a wave vector along the hexago-
nal axis are quite sharp and well defined [10]. More re-
cently it was found [11–13] that at the AF wave vector
Q = (0, 0, π) in reduced units (Appendix A) a strong in-
teraction of these collective modes of localized moments
with the heavy conduction electrons exists which leads
to a resonance-like structure in the dynamical structure
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function due to a near degeneracy of the exciton mode
energy at Q and the superconducting gap. Before that
tunneling measurements [17] have already shown that
strong coupling anomalies in the tunneling current exist in
the same energy range where the magnetic excitons at Q
were found. This has lead to the conclusion that they are
indeed the bosonic ‘glue’ which is responsible for the for-
mation of Cooper pairs in this compound [18]. The ar-
gument is quite analogous to the strong coupling conven-
tional electron-phonon superconductors where the phonon
spectrum known from inelastic neutron scattering leaves
its imprint on the sc tunneling spectrum. UPd2Al3 is
therefore the first case of an unconventional HF supercon-
ductor where a similar comparison has lead to the identi-
fication of the pairing mechanism, in this case the pairing
is mediated by the exchange of magnetic excitons.

In the present work this novel type of pairing mecha-
nism is investigated in detail. It is different from both the
electron-phonon mechanism in conventional superconduc-
tors and from the spin fluctuation mechanism which is
commonly assumed to be present in the unconventional
superconductors with strongly correlated electrons. The
former is mediated by slightly damped real frequency
bosons (phonons) which do not couple to the spin de-
grees of freedom, thus allowing only for spin singlet pairs.
The latter is mediated by strongly overdamped spin-
fluctuations, i.e. bosons with purely imaginary frequency
which couple to conduction electron spins in a rotationally
invariant manner and in principle allow for both spin sin-
glet and triplet pairing. The new pairing mechanism dis-
cussed here has distinctly different features: It is mediated
by magnetic excitons which are real frequency, propagat-
ing bosonic modes that couple to the conduction electron
spin, however in a way which explicitly breaks spin rota-
tional invariance due to the presence of the CEF splitting.
Together with the effect of the AF order parameter this
will lead to a complete splitting of triplet states resulting
in nondegenerate odd parity pair states.

It is the aim of this work to study within a generic
dual model of 5f electrons (Sect. 2) the magnetic exciton
bands (Sect. 3) and the associated pair potential (Sect. 4)
of this mechanism, incorporating both the localized CEF
states which originate from the 5f2 configuration of the
U4+ state of UPd2Al3 and the conduction electrons. Fur-
thermore the gap equations and their explicit solutions
together with their node line structure for a quasi one di-
mensional model are discussed explicitly; it is also shown
how the presence of the AF background influences the gap
structure and lifts the degeneracy (Sect. 5). Finally we
discuss a hybrid model including also the usual spin fluc-
tuation contribution (Sect. 6). A summary and outlook is
given in Section 7.

2 Basic Hamiltonian for the dual 5f-model

The pronounced susceptibility anisotropy of UPd2Al3
with an almost constant χc and a strongly temperature
dependent χa(T) with a maximum at T = 50 K is per-
haps the most direct evidence for the presence of localised

CEF-states [8]. In fact the χa,c(T)-dependence was used to
extract the hexagonal CEF-scheme in reference [8] where
it was concluded that U4+(5f2) ground state and first
excited states are both singlets. However later it was
found [16] that this cannot explain the temperature de-
pendence of the staggered magnetisation and a singlet-
doublet system was proposed instead. The magnetic exci-
tations are very similar for both CEF systems except for
a small difference in their temperature dependence as will
be explained in Section 3.2.1. Therefore using the singlet-
singlet CEF scheme will be adequate in the following. It
has the ground state |g〉 (0 meV) and excited state |e〉
(∆ = 6 meV). The value of ∆ is obtained from a fit to the
experimental excitations (Sect. 4) and is close to the one
obtained from the temperature variation of susceptibility
and AF order parameter [16]. All higher CEF levels start-
ing at ∼10 meV will be neglected. The total Hamiltonian,
including the localized part HCEF +Hff , the conduction
band states (Hc) of the remaining itinerant 5f -electron
and its interaction with localized states (Hcf ) was intro-
duced in reference [18] as

H = Hc +HCEF +Hff +Hcf

H =
∑
kσ

εkσc
†
kσckσ +∆

∑
i

| e〉〈e |i

−
∑
〈〈ij〉〉

Jff (ij)JiJj − 2I0(g − 1)
∑
i

siJi. (1)

Here εkσ is the dispersion of itinerant electrons de-
scribed by (ckσ,si) creation and spin operators. The real
Fermi surface (FS) of UPd2Al3 is very complicated in-
volving many sheets [19,20]. Within a model approach a
simplification is necessary keeping only the most impor-
tant FS part which dominates the HF behaviour due to
its large area and mass. It has the shape of a slightly cor-
rugated cylinder along the hexagonal c-axis [19,20]. The
cylindrical symmetry has further great advantages for the
treatment of the superconding gap equations (Sect. 5). It
can be modeled by the expression

εkσ = ε⊥(k⊥σ)− 2t‖ cos kz (2)

where ε⊥(k⊥σ) is the dispersion perpendicular to the c-
axis whose precise form is unimportant in the following,
the much smaller dispersion parallel to c which is responsi-
ble for the corrugation of the FS cylinder is determined by
an effective hopping energy t‖. The localised 5f -electrons
have a total angular momentum Ji (J = 4). Within the
singlet-singlet subspace they can be represented by a pseu-
dospin Si (S = 1

2 ) with the correspondence

Jx = αSx, Jy = αSy , Jz = ε

(
1
2
− Sz

)
. (3)

This means that 〈e|Jx|g〉 = −i〈e|Jy|g〉 = 1
2α and

〈e|Jz|g〉 = 0, i.e. inelastic singlet-singlet transitions can
only be excited by the transverse operators Jx,y. This
anisotropy is a direct consequence of the hexagonal CEF
and ultimately will also be responsible for a spin space
anisotropy of the superconducting pair potential (Sect. 4).
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The third term describes a possible superexchange
Jff = 4(g−1)2t2ff/U between the localised 5f -electrons
due to their remaining finite inter-site hopping tff . The
last term finally represents the exchange interaction which
couples the itinerant and localised 5f -electrons of the
dual model. The total effective inter-site exchange be-
tween localized 5f -moments is then given by its Fourier
transform as

J
↔

(q) = J
↔
ff (q) + I2

0 (g − 1)2
↔
χ′0(q)

↔
χ′0(q) = χ↔0(q) − 1

N

∑
q

χ↔0(q). (4)

The first (superexchange) part is naturally of AF type,
the second (RKKY) part is in principle determined by the
static conduction electron susceptibility χ↔0(q). For the FS
corresponding to equation (2) there is a nesting property
(Fig. 8) which leads also to an AF RKKY term. Therefore
J
↔

(q) is AF with a maximum at Q. In the following J
↔

(q)
will be treated as an empirical quantity to be parametrized
by fitting the actually observed magnetic excitations to
the theoretical predictions based on the dual Hamiltonian
of equation (1).

3 The antiferromagnetic singlet-singlet
system

The ‘induced’ magnetism of singlet-singlet CEF-systems
is well studied for Pr-compounds (for a review, see
Ref. [21]). Since U4+ has also a f2 electron configura-
tion similar to Pr3+ singlet-singlet systems may also ex-
ist in U-compounds with rather localised 5f -states such
as UPd2Al3. In a singlet-singlet system the ground state
is nonmagnetic, i.e. 〈g|J|g〉 ≡ 0. Nevertheless magnetic
moments may appear spontaneously at TN if the effective
exchange is strong enough to mix the excited state |e〉 into
the ground state |g〉. The mixed state |g̃〉 will then have
nonzero moment due to the nondiagonal matrix element
α= 2〈e|Jx|g〉. In this case the AF transition is preceded
by the softening of a ‘magnetic exciton’ mode at the AF
wave vector (Q = (0, 0, π) in UPd2Al3).

3.1 Exchange model and origin of induced AF order

The magnetic exciton mode can be interpreted as origi-
nating from local CEF-excitations |g〉 ↔ |e〉 with energy
∆ which propagate from site to site due to the effective
exchange and this process leads to the magnetic exciton
dispersion. It is therefore a collective excitation of local-
ized 5f -CEF states and may be obtained from the second
and third term in equation (1) but taking the total ef-
fective exchange of equation (4) instead. Within the two
singlet subspace this leads to a Hamiltonian

H0 = (∆/ε)
∑
i

J iz −
1
2

∑
〈ij〉

JiJ
↔
ijJj (5)
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Fig. 1. Schematic view of conventional unit cell of
UPd2Al3 with only U-atoms shown (a = 5.35 Å, c = 4.185 Å).
Arrows indicate magnetic moments with FM-in plane order
and AF stacking along c corresponding to Q = (0, 0, πc ). The
exchange pairs used in the model of Section 3 are also indi-
cated. J3 and J4 describe the coupling to n.n.n. pairs along c
and in the ab-plane respectively. The values of Ji(i = 0−4) are
given in the caption of Figure 4.

where J
↔

is the uniaxial exchange tensor of equation (4)
with Jxxij = Jyyij = Jaij and Jxxij = Jcij . Its Fourier transform
for the two AF sublattices A, B (= λ, τ) is given by (i ∈ λ)

J
↔
λτ (q) =

∑
j∈τ

J
↔
ij exp(−iq(Ri −Rj)) = J

↔
τλ(q)∗. (6)

As mentioned in Section 2 the exchange functions
will be empirically parametrized to fit the magnetic ex-
citon dispersion. The exchange couplings included are il-
lustrated in Figure 1. This leads to

J
↔
D(q) = J

↔
AA(q) = J

↔
BB(q) =

J
↔

1γ1(q) + J
↔

3γ2(q) + J
↔

4γ3(q)

J
↔
N (q) = J

↔
AB(q) = J

↔
BA(q)∗ =

[J
↔

0 + J
↔

2γ1(q)]γ0(q). (7)

The structure functions γi(q) are given by

γ0(q) = 2 cos qz

γ1(q) = 2

[
cos qx + cos

(
1
2
qx +

√
3

2
qy

)

+ cos

(
1
2
qx −

√
3

2
qy

)]
γ2(q) = 2 cos 2qz

γ3(q) = 2

[
cos
√

3qy + cos
√

3
2

(qy +
√

3qx)

+ cos
√

3
2

(qy −
√

3qx)

]
(8)

where γ0(qz ± Qz) = −γ0(qz) and γ2(qz ± Qz) =
γ2(qz). This leads to the important symmetries
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J
↔
D(qz ±Qz) = J

↔
D(qz) and J

↔
N (qz ± Qz) = −J

↔
N (qz)

where q and Q=(0,0,π) are given in units of a−1 and
c−1 for x, y and z components, respectively. Each of the
exchange parameters J

↔
ν (ν = 0−4) in equation (7) which

corresponds to a given in- or out-of plane neighbor shell
in Figure 1 is in general a uniaxial tensor. The tensor
notation will now be suppressed for simplicity. In mean
field (mf) approximation the Hamiltonian in equation (5)
reads:

Hmf
0 =

∑
i

[(∆/ε)Jz(i)− hλeJx(i)]

hλe = [JAA(0)− JAB(0)]〈J〉λ = J(Q)〈J〉λ

Je = J(Q) = 2[3J1 + 3J4 + J3 − J0 − 6J2]. (9)

Here he= he(A)= -he(B) =hex̂ is the staggered molec-
ular field and 〈J〉 = 〈Jx〉 = α〈Sx〉 is the induced moment
(in units of gµB). The single-ion mf Hamiltonian for each
sublattice is then

hA0 (i) =
∆

2

(
1 −γ′
−γ′ −1

)
hB0 (i) =

∆

2

(
1 γ′

γ′ −1

)
(10)

where γ′ = γ〈J〉, γ = αJe
∆ . The mf-energies and states are

then given by

ε± = ±∆
2

[1 + γ
′2]

1
2

|+〉 = u|e〉 − v|g〉

|−〉 = u|e〉+ v|g〉· (11)

Here u = cos θ, v = sin θ determine the rotation to
the |±〉 mf eigenstates with 2θ = tan−1(γ′), furthermore
sin 2θ = (1 + γ

′2)
1
2 and cos 2θ = γ′(1 + γ

′2)
1
2 where the

convention θ = θA = −θB has been used. From the mf-
single ion partition function Z=coshβε one obtains the
mf-equations for the singlet-singlet splitting ∆′(T ) in the
ordered state

∆̂(T ) =
∆′(T )
∆

=
1
∆

(ε+ − ε−) = (1 + γ
′2)

1
2

∆̂(T ) = ξ tanh
[(

β∆

2

)
∆̂(T )

]
= 2ξ〈S〉· (12)

Here 〈Sz〉 ≡ 〈S〉 is the pseudospin expectation value
which can be replaced by 1

2 since T � ∆, furthermore
∆̂(0) = 1

2αγ = ξ. The control parameter of the singlet-
singlet system is

ξ =
α2Je
2∆

(13)

which characterizes the strength of exchange vs. size of
CEF splitting. It determines the AF transition tempera-
ture where ∆̂(TN) = 0 as

TN =
∆

2 tanh−1(1
ξ )

=
∆

2 tanh−1( 2∆
α2Je

)

1
ξ

= tanh
∆

2TN
· (14)
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Fig. 2. Temperature dependence of magnetic exciton soft
mode frequency ω−(0)T (thin line) (Eq. 33) and normalized
induced AF moment 〈J〉T /〈J〉0 (thick line) as given by equa-
tion (15). The small finite ω−(0)T below TN is due to exchange
anisotropy. Physical parameters are the same as in Figure 4.

The staggered induced moment as a function of tem-
perature is given by

〈Ĵ〉T =
〈J〉T
〈J〉0

= (ξ2 − 1)−
1
2

[
∆̂2(T )− 1

] 1
2

〈J〉0 = α〈Sx〉0 =
1
2
α

1
ξ

(ξ2 − 1)
1
2 (15)

where 〈J〉0 is the saturation moment. To obtain a spon-
taneous induced moment 〈J〉0 > 0 the control parameter
ξ must fulfil ξ > ξc ≡ 1. For ξ = 1 + δ (δ � 1) slightly
above its critical value ξc = 1 the saturation moment is
given by

〈J〉0 =
α√
2
δ

1
2 ; δ = 2 exp

(
− ∆

TN

)
· (16)

Therefore when ξ ≥ 1 or TN � ∆ the saturation mo-
ment becomes exponentially small. This distinguishes an
induced moment system from a conventional magnet with
degenerate ground state where the saturation moment is
a constant independent of TN . Note that the above re-
lations also hold in the ferromagnetic case if we replace
Je → Jff (0) = JAA(0) + JAB(0). The temperature de-
pendence of the induced moment is shown in Figure 2.

3.2 Magnetic exciton dispersion and AF soft mode

The local CEF excitation at site i with energy ∆ can
propagate through the effect of the inter-site exchange
whose transverse parts lead to transitions |e〉i → |g〉i and
|g〉j → |e〉j simultaneously. This causes a widening of ∆
into a dispersive band of ‘magnetic excitons’. It should
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be stressed that these elementary excitations do not re-
quire the presence of a magnetic order parameter as in
the case of spin waves. Magnetic excitons exist already in
the paramagnetic (PM) phase. As function of temperature
they may exhibit softening at a certain wave vector which
signifies a magnetic transition that leads to the appear-
ance of induced moments. This mechanism is well studied
for Pr metal [21] and some compounds where the order-
ing wave vector may be incommensurate in contrast to
the commensurate AF wave vector Q in UPd2Al3. In the
following a detailed description of the magnetic exciton
modes for UPd2Al3 is given since they are the bosonic
excitations thought to mediate superconductivity in this
compound (Sect. 4.2). The calculation is done most con-
veniently in the linear response formalism in RPA which
starts from the dynamical susceptibility of the singlet-
singlet system [21].

χλµij;αβ(τ) = −〈T{Jλiα(τ)Jµjβ(0)}〉 (17)

where i, j = lattice site, λ, µ= AF sublattices (A, B)
and α, β = x, y, z are Cartesian coordinates. Its Fourier
transform is given in RPA by

χ↔(q, ω) =
[
1− u↔(ω)J

↔
(q)
]−1

u↔(ω). (18)

Here χ↔, u↔ and J
↔

are 4 × 4 tensors, e.g. χ↔={χ}λα,µβ
with λ, µ = A, B and α, β = x, y transverse Cartesian
coordinates. The tensor u↔ is diagonal in λ, µ and J

↔
is

diagonal in α, β. The expression for u↔(ω) is given in Ap-
pendix (B). To keep it in a simple form in the ordered
state (〈J〉 > 0) a real space back rotation by an angle θr=
θAr = -θBr has to be applied to compensate for the effect
of the molecular field. Under this rotation the exchange
tensors transform as

J
↔′(λµ) =

↔
D(θλr )J

↔
(λµ)

↔
DT (θµr ). (19)

The magnetic exciton modes are then obtained as poles
of the dynamical susceptibility in equation (18) leading to
the secular equation det χ↔(q, ω) = 0 or∣∣∣↔u′−1(ω)− J

↔′(q)
∣∣∣ = 0. (20)

With
↔
u′−1(ω) given in equation (B.5). The magnetic ex-

citon branches obtained from the secular equation above
will now be discussed for several cases. For brevity the
primes in the transformed tensors will be suppressed un-
less explicitly needed.

3.2.1 Paramagnetic phase, isotropic exchange

In this case there are no sublattices A, B and only one
exchange function J

↔
(q) = J

↔
D(q) + J

↔
N (q) appears, fur-

thermore ∆′ = ∆ holds and equation (20) then yields the
PM exciton dispersion

ω(q) = ∆− α2〈S〉J(q)

ω(q) = ∆

[
1− α2J(q)

2∆
tanh

β

2
∆

]
. (21)

At the AF point Q (PM zone boundary) we have
J(Q) = JD(Q) + JN (Q) ≡ Je and therefore

ω(Q, T ) = ∆

[
1− ξ tanh

β

2
∆

]
. (22)

This zone boundary mode in the paramagnetic BZ
(PMBZ) becomes soft when T → TN from above accord-
ing to equation (22).

ω(Q, T ) =
1
2

(
∆

TN

)2(
ξ − 1

ξ

)
(T − TN). (23)

It approaches zero linearly above TN . Below TN the
induced moment of equation (15) appears staggered along
the c-axis leading to two AF sublattices A, B. Then
Q = (0, 0, π) becomes the new center of the antiferromag-
netic BZ (AFBZ). One has the connection q ′ = q −Q,
where q ∈ PMBZ (|qz| ≤ π) and q ′ ∈ AFBZ (|q′z| ≤ π

2 )
as illustrated in the inset of Figure 8. The prime for the
AFBZ will be suppressed i.f. unless explicitly necessary.
Here it is also appropriate to comment on the use of
a singlet-singlet (|g〉, |e〉) low lying CEF system instead
of a singlet-doublet scheme (|g〉, |e1,2〉) probably realised
in UPd2Al3 [16]. For the latter the excitation spectrum
within RPA may be obtained from equation (21) by i) a
suitably redefined matrix element 1

4α
2=
∑
i=1,2 |〈ei|Jx|g〉|2

in equation (13) and ii) replacing the T -dependent func-
tion in equation (21) by [tanh β

2∆]1
2 [3 − tanh β

2∆] which
is due to the changed partition function and level occu-
pation caused by the doublet degeneracy. For TN � ∆
the dispersion in the two cases will be almost identical.
The inclusion of higher lying degenerate CEF multiplets
with diagonal matrix elements would have an interesting
effect: Due to their associated Curie terms in the static
susceptibility which contribute to the AF transition but
not to the dynamic susceptibility, the soft mode behaviour
will be arrested at a finite frequency at TN , contrary to
the complete softening at TN for the singlet-singlet case
in equation (23). This may be the most important reason
for the observed magnetic excitation gap at Q.

3.2.2 AF induced moment phase, isotropic exchange

For the solution of equation (20) one now needs the
rotated exchange tensor in equation (19). For isotropic
J
↔

(λµ) one obtains

J
↔′(λµ) = J

↔
(λµ)

↔
D
(
θλr
)↔
DT (θµr )

J
↔′
D(q) = J

↔
D(q)

J
↔′
N (q) =

1− γ′2
1 + γ′2

J
↔
N (q) (24)

where J
↔′
D(q), J

↔′
N (q) are the intra- and inter-sublattice

exchange tensors in the rotated (x′, y, z′) coordinate sys-
tem respectively. From equation (20) one then obtains the
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magnetic exciton dispersion

ω2
∓(q) = [∆′ − α2〈S〉(JD(q)∓ rJN (q))]

[∆′ − α2〈S〉(JD(q)∓ JN (q))]

r =
1− γ′2
1 + γ′2

=
2− ξ2

ξ2
· (25)

Here the last identity holds because T� ∆ where γ
′2 =

∆̂2 − 1 ' ξ2 − 1. Equivalently this may be written

ω2
∓(q) = [∆′ − α2〈S〉J±(q)]2 − (α2〈S〉)2γ

′4J̃2
N (q)

J̃N (q) = (1 + γ
′2)−1JN (q); J±(q)=JD(q) ± J̃N (q). (26)

In the AFBZ ω−(q) and ω+(q) correspond to acous-
tic (A) and optical modes (O) respectively. Due to the
property JN (q ± Q) = −JN(q) the optic mode ω+(q)
with q ∈ AFBZ is the downfolded (shifted by an AF re-
ciprocal lattice vector Q) acoustic mode ω−(q) with q ∈
PMBZ. This connection is illustrated in Figure 3 (left
panel). It is instructive to consider two limiting cases for
this dispersion:
(i) ξ ≥ 1 (r → 1)
In this marginally critical case r ≥ 1 and equation (25)
reduces to

ω2
∓(q) = ∆′ − α2〈S〉JD(q) ∓ α2〈S〉JN (q). (27)

The acoustic mode ω−(q) evolves from the paramag-
netic soft mode ω(q) of equation (21) and the optic mode
ω+(q) is obtained by downfolding ω−(q). Therefore we
have two strongly split A, O modes in the AFBZ in the
present case. Including only n.n. exchange along the c-axis
in equation (7) leads to JD = 0 and JN (q) = 2J0 cos qz
and we obtain with α2〈S〉 = ξ∆ ' ∆:

ω∓(q) = ∆(1± cos qz). (28)

The two modes are periodic in the reduced AFBZ.

(ii) ξ � 1 (r → −1) In this limit the magnetic excitations
are exchange dominated and the influence of the CEF is
negligible, therefore they can essentially be viewed as AF
spin waves. One obtains from equation (25):

ω2
∓(q) = [∆

′2 − (α2〈S〉)2J2
N (q)]

1
2

= α2〈S〉)[J2
N (0)− J2

N (q)]
1
2 (29)

where we used ∆′ = ∆ξ = α2〈S〉0Je = α2〈S〉JN (0).
Again, for only n.n. exchange along the c-axis (JD = 0,
JN (q) = zJ0 cos qz, z = 2) one obtains

ωAF (q) = ω∓(q) = α2〈S〉zJ0| sin qz | = ∆AF | sin qz| (30)

which is the spinwave dispersion of a simple AB-
antiferrromagnet. Due to isotropic exchange it is twofold
degenerate by which it is clearly distinguished from the
strongly split A-O exciton modes in the marginally critical
(ξ ≥ 1) case. An illustrative comparison of the two cases
(ξ ≥ 1, ξ � 1) is shown in Figure 3 where∆AF= α2〈S〉zJ0

is the spin wave band width with ∆AF /∆ = ξ � 1.
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Fig. 3. Left panel: Magnetic exciton branches ω± in the AFBZ
(ΓAA′ is equivalent to AΓA, see also inset of Figure 8). Phys-
ical parameters as in Figure 4. Right panel: Simplified model
with only n.n exchange along c. Comparison of magnetic ex-
citon branches ω± for the CEF-dominated case (ξ ≥ 1) and
(twofold degenerate) AF spin wave dispersions ωAF for the ex-
change dominated case (ξ � 1), normalization to ∆ and ∆AF

of equation (30) respectively.

3.2.3 AF phase, anisotropic exchange

In the isotropic case a gapless Goldstone mode for q→ 0
(AFBZ) will be present for any ξ ≥ 1 above the criti-
cal value. However due to the uniaxial symmetry of the
effective exchange tensor equation (4) in principle one
has to expect gapped magnetic excitations. For simplic-
ity we assume that the anisotropy is independent of the
spin pairs, then we may define uniaxial JaD,N (q), JcD,N (q)
exchange functions in obvious notation where a,c refers
to the hexagonal directions. The magnetic exciton modes
may again be obtained as solutions of equation (20), how-
ever the transformed J

↔′
D(q) and J

↔′
N (q) are no longer pro-

portional to the unit matrix as in equation (24). Instead
one has for the restricted (x′, y) coordinate system:

J
↔′
D =

↔
D
(
θAr
)
J
↔
D

↔
DT

(
θAr
)

=
(
u2
rJ

a
D + v2

rJ
c
D 0

0 JaD

)
(31)

J
↔′
N =

↔
D
(
θAr
)
J
↔
N

↔
DT

(
θBr
)

=
(
u2
rJ

a
N − v2

rJ
c
N 0

0 JaN

)
(32)

where ur = cos θr, vr = sin θr and the rotation angles for
the two sublattices are θAr = θr = −2θ and θBr = −θr =
2θ. Therefore (Appendix B) ur = cos 2θ = a = (1+γ

′2)−
1
2

and vr = sin 2θ = b = γ′a. From equation (20) and using
equations (31, 32) we then obtain the magnetic exciton
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modes in the most general case considered here as

ω2
±(q) = [∆′ − α2〈S〉J±(q)]2 − (α2〈S〉)2γ

′4J̃(q)2
±

J±(q) = (JD ± JacN ) + (1 + γ
′2)−1(JacD ± JN )

J̃±(q) = (1 + γ
′2)−1(JacD ± JN )

JD,N =
1
2

(JaD,N + JcD,N)

JacD,N =
1
2

(JaD,N − JcD,N). (33)

In the case JaN = JcN and JaD = JcD this reduces to the
isotropic result of equations (25, 26).

3.3 Model calculation, comparison with INS results

The simple AF structure was determined in reference [22]
and subsequently inelastic neutron scattering (INS) exper-
iments on single crystalline UPd2Al3 were performed [10]
in an energy range up to 10 meV in the whole AFBZ
to determine the collective magnetic excitations. It was
concluded that for q ‖ c∗-axis well defined magnetic exci-
tation modes exist. For q ⊥ c∗-axis their dispersion was
also determined, however line widths are generally larger
in this case. An extrinsic damping mechanism via cou-
pling to itinerant 5f -electrons was concluded from the ab-
sence of a zone center gap. However later more accurate
low energy experiments [11,12] have shown that a gap of
1 meV exists at the AF wave vector (AFBZ zone center).
Within the present RPA theory the exchange anisotropy
introduced before can only generate small gaps ≤0.2 meV
because of the vicinity to the quantum critical point at
ξc = 1 of the AF singlet-singlet system as discussed be-
fore. As mentioned in Section 3.2.1 a possible origin of
the observed gap at the AFBZ zone center is the arrested
softening at TN if the influence of other CEF states on the
magnetic ordering is included. Another possibility is a dy-
namical origin of the gap due to terms neglected in RPA.
Finally we mention that the q ' 0 low energy excitation
modes will be strongly shifted and broadened due to the
interaction with 5f -conduction electrons as proposed and
investigated in reference [18].

In the present discussion the focus is on the fundamen-
tal origin of the superconducting pair potential and the re-
sulting gap function within the weak coupling approach.
For this purpose the details of the low energy spectral be-
haviour of the soft mode (AFBZ) is not of primary inter-
est. It is more important to obtain a good global descrip-
tion of collective magnetic excitations for all wave vectors
and energies since it is the total spectrum which deter-
mines the strength and anisotropy of the pairing poten-
tial. For this reason we use the RPA theory developed in
the previous section to describe the magnetic excitations
found in reference [10] for the whole AFBZ. Going beyond
RPA for the magnetic exciton spectrum would also neces-
sitate a strong coupling approach to the pairing problem
to stay on the same level of theoretical treatment for mag-
netic and superconducting sub-systems. This challenging
problem will be left for a future investigation.
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onal AFBZ. Squares are data from reference [9]. Solid line:
Calculation from equation (33) using the exchange parameters
Ji (i = 0−4) in meV J0 = −1.63, J1 = −0.4, J2 = −0.31,
J3 = 1.75 and J4 = 0.6 as defined in Figure 1. For technical
reasons an a-c exchange anisotropy of 1.1 is assumed which
leads to a very small Γ -point gap.

We will now discuss the experimental and theoreti-
cal dispersion of magnetic excitons for UPd2Al3 unfolded
along typical symmetry lines of the hexagonal AFBZ. For
the singlet-singlet system the magnetic exciton dispersion
according to equation (33) requires the following quanti-
ties: CEF-gap∆, exchange constants for the various neigh-
bor shells and the uniaxial anisotropy constant. For the
CEF splitting we take ∆ = 6 meV which corresponds
roughly to the center of the magnetic exciton band as seen
e.g. in the simple model of Section 3.2.2. Furthermore this
is also approximately the value obtained from fitting the
susceptibility as function of temperature [16]. Since TN
(14.3 K)�∆ (66 K) we are in the CEF dominated regime:
According to equation (14) ξ = (tanh ∆

2TN
)−1 = 1.015

is only slightly above the value for the QCP at ξc = 1
which leads to a saturation moment 〈J〉0 � 1

2α and
hence ∆′ ' ∆. Therefore the excitation spectrum will
be almost like the magnetic excitons in the paramagnetic
regime. The exchange model used for the local moments of
UPd2Al3 is illustrated in Figure 1. A considerable number
of neighbor shells has to be included to get an agreeable fit
to the experimental data. The result is shown in Figure 4
with the exchange constants in the figure caption corre-
sponding to the notation in Figure 1. The calculated and
experimental dispersion are strongest along the hexagonal
c-axis where the modes are also well defined i.e. the line
width is small. In addition it shows a pronounced dip at
the K-point. Because of the relation ω+(q±Q) = ω−(q)
only ω−(q) is plotted. In the sector ΓA it corresponds to
the acoustic mode and in the sector AA′ it is the opti-
cal mode, this is illustrated in Figure 3 (left panel). The
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large mode energy at A′ gives direct evidence that one has
a CEF-dominated singlet-singlet system; in the opposite
exchange dominated regime with hypothetical TN � ∆
one would have almost degenerate acoustic and optical
branches close to ωAF shown in Figure 3 (right panel)
and in this case the excitation energy at A′ should be
very small again. It is not entirely clear how realistic the
dip at the K-point reported in reference [10] is in view of
the fact that the line width becomes much bigger than the
mode energy at this symmetry point.

4 The superconducting pair potential

In the known superconductors the formation of Cooper
pairs is thought to be mediated by the exchange of bosonic
excitations of the medium. This is a simplified picture of
a complicated many body problem. More generally the
pair formation is the result of a singular behaviour in the
low energy part of the two particle scattering matrix. In
the simplified picture this singularity is described by the
repeated electron-electron scattering via boson exchange.
In a nonretarded weak coupling approach this is equiva-
lent to the formation of a bound state in the appropriate
scattering channel.

Two origins of Cooper pair formation are commonly in-
volved for describing real superconductors: (i) the (BCS)
electron-phonon mechanism in conventional superconduc-
tors where the effective attraction needed for bound state
formation is provided by the exchange of a real frequency
(propagating mode) phonon. It is spin independent and al-
lows only for the formation of s-wave spin singlet Cooper
pairs. (ii) the spin fluctuation mechanism in strongly cor-
related electron systems (HF-compounds, cuprates etc.)
where the Cooper pair formation is due to exchange of
an imaginary frequency spin fluctuation of conduction
electrons, predominantly close to an AF zone boundary
wave vector (overdamped “anti-paramagnon” mode). The
latter mechanism which is in principle relevant also for
UPd2Al3 , has originally been introduced in the context of
superfluid He3 by Nakajima [23] in its paramagnon form.
Later it has been adopted for various Heavy Fermion su-
perconductors by many authors, see e.g. reference [24] be-
cause it naturally leads to the possibility of unconven-
tional pair states thought to occur in these compounds.
It involves the spin degrees of freedom in a rotationally
invariant way and allows for spin singlet and triplet pair
formation. (iii) As a novel mechanism it has recently been
proposed [18] that in U-compounds like UPd2Al3 with 5f -
electrons of dual character the exchange of magnetic ex-
citons lies at the origin of superconductivity. This mech-
anism is distinctly different from those discussed before.
On one hand it is mediated by a real frequency propagat-
ing mode, the magnetic excitons, on the other hand, as in
the previous case it involves the spin variables, but due to
the presence of a CEF splitting the rotational symmetry
is broken.

In this part of the present work we will derive and dis-
cuss the nonretarded effective pair potential of this new

mechanism in detail. Because it is important to under-
stand its differences as compared to the spin fluctuation
mechanism usually invoked for HF metals we first give a
short summary of the salient ingredients of the latter.

4.1 The spin fluctuation model of pairing

This pairing mechanism may be dominant in many
strongly correlated electron systems where one has a
screened on-site Coulomb interaction of heavy quasiparti-
cles described by

Hint = Ic

∫
d3rn↓(r)n↑(r)

=
Ic
V

∑
k,k ′

c†k↑c
†
−k↓c−k ′↓c−k ′↑. (34)

Summing appropriate two particle scattering diagrams
in RPA [23] equation (34) leads to an effective pair Hamil-
tonian (q = k ′ − k)

Heff =
1
2

∑
kk′,αβγδ

[Vρ(q)δαβδγδ + Vs(q)σαβσ′γδ]

×c†kαc
†
−kγc−k′δck′β (35)

where the sum in parentheses describes the effective two
particle interaction and σ, σ′ denote Pauli matrices. It con-
tains a spin-independent potential scattering of strength
Vρ(q) and an exchange scattering of strength Vs(q) which
are obtained in RPA as

Vρ(q) =
1
2Ic

1 + Icχ0(q)
; Vs(q) =

− 1
2Ic

1− Icχ0(q)
· (36)

Using the projectors for pair spin singlet (S = 0) and
triplet (S = 1) channels respectively,

P0 =
1
4

(1− σσ′)

P1 =
1
4

(3 + σσ′) (37)

with the Kronecker product (σσ′)αβ;γδ= σαβσ
′
γδ, one can

separate Veff (q) into the irreducible potentials of singlet
and triplet Cooper pairing:

V0(q) = Vρ(q)− 3Vs(q) ' 3
2
I2
cχ(q)

V1(q) = Vρ(q) + Vs(q) ' −1
2
I2
cχ(q) (38)

where the last approximation in the above equations holds
for wave vectors with enhanced spin fluctuations, i.e. when
χ(q)� χ0(q). Here

χ(q) =
χ0(q)

1− Icχ0(q)
(39)
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is the RPA susceptibility of conduction electrons which
has its maximum at a nesting vector Q which may be
the commensurate AF vector. The effective potential may
be written, using spin projectors P0, P1 and defining the
sequence of states as (↑↑, ↑↓, ↓↑, ↓↓), in the following form:

↔
V eff (q) = V0(q)P0 + V1(q)P1 =V1 0 0 0

0 1
2 (V0 + V1) − 1

2 (V0 − V1) 0
0 − 1

2 (V0 − V1) 1
2 (V0 + V1) 0

0 0 0 V1

 (40)

where according to equation (38) 1
2 (V0 + V1) '

1
2I

2
cχ,− 1

2 (V0 − V1) ' − 1
2I

2
cχ, V1 ' − 1

2I
2
cχ. Note that the

total spin component sz = 1
2 (σz + σ′z) is conserved due

to rotational invariance of Veff , therefore matrix elements
corresponding to a change of the z-component of the pair
spin like 〈↑↑ |Veff | ↓↓〉 = 〈↓↓ |Veff | ↑↑〉 vanish. One may
explicitly check by diagonalisation that Veff (q) has singlet
|0〉 and triplet |1, sz = 0,±1〉 eigenstates with energies V0

and V1 respectively. The momentum dependence of χ(q)
finally determines which orbital pair state will be realized
as discussed in reference [24] who conclude that even par-
ity singlet pairs are favored in general.

4.2 Pair potential due to magnetic exciton exchange

In the dual model of equation (1) the on-site Coulomb
interaction of the itinerant 5f -electrons is neglected and
only indirect interaction via intermediate CEF excitations
due to the last term is considered. Since the latter can
propagate this means an effective conduction electron in-
teraction via the exchange of magnetic excitons. This will
now be derived by similar diagrammatic methods as in
reference [23], however the details will be quite different
for the present case. In this section we neglect the main
effect of AF order on the pair potential and consider only
the paramagnetic case. For the derivation of the pair po-
tential the Hamiltonian equation (1) will be first rewritten
in terms of more convenient bosonic variables for the CEF
singlet-singlet excitations introduced via the pseudo spin
Holstein-Primakoff representation

S+
i = ai S

−
i = a+

i Szi =
1
2
− a+

i ai. (41)

Here ai is a local boson that describes CF-excitations
|g〉 → |e〉 at site i. For T � ∆ the influence of unphysical
states (ai)n|0〉 with n ≥ 2 is negligible. This condition is
very well fulfilled since T � TN � ∆. Then the on-site
exchange

Hcf = −2I0(g − 1)
∑
i

[sizJiz + s+
i J
−
i + s−i J

+
i ] (42)

can be transformed, using Jz = ε(1
2 − Sz) and J± = αS±

and equation (1) to obtain

Hcf = − I√
N

∑
kk′

[c+k′↑ck↓a
+
k−k′ + c+k′↓ck↑ak′−k]

− Iz√
N

∑
kk′q

(c+k′↑ck↑ − c
+
k′↓ck↓)a

+
q+k−k′aq (43)

where I = α(g−1)I0 and Iz = ε(g−1)I0. For α, ε see equa-
tion (3), furthermore

aq =
1√
N

∑
i

aieiqRi (44)

creates CEF-bosons of momentum q. The total
Hamiltonian of equation (1) is then given by

H =
∑
kσ

εkσc
†
kσckσ +∆

∑
q

a+
q aq +Hff +Hcf . (45)

The interaction term in equation (43) contains both
1-boson absorption or creation parts as well as 2-boson
scattering parts. The latter describes conduction electron
scattering from quantum fluctuations in the occupation
of the two singlet CEF-states. Its contribution will be ne-
glected in the following discussion. The boson propagator
is given by

Dq(τ) = D+
q (−τ) = −〈Tτaq(τ)a+

q (0)〉 (46)

and its Fourier transform (ωn = 2nπT ) by

Dq(iωn) = D+
q (−iωn) =

1
iωn −∆

· (47)

The momentum q for the noninteracting CEF-bosons
is a dummy variable. Note that in the zero frequency limit
(DqD

+
q )ωn→0 = 1

∆2 . The lowest order nontrivial polarisa-
tion and exchange diagrams for the effective e-e interac-
tion vertex due to the 1-boson part of equation (43) are of
order ∼I4 and are shown in Figure 5. For the nonretarded
e-e vertex function Γ0(q) that enters the effective pairing
Hamiltonian we only need the zero frequency limit of Fig-
ure 5 in which the diagrams lead to equal contributions:

Γ 2
0 (q) = [I2χ0(q, 0)]2(DqD

+
q )ωn→0 =

[
I2

∆
χ0(q, 0)

]2

.

(48)

Here the noninteracting susceptibility χ0(q) =
χxx(q) = χyy(q) is given by the Lindhard function

χ0(q) =
∑
k

fk − fk+q

εk+q − εk
· (49)

The summation of polarisation and exchange diagrams
as in Figure 5 to infinite order in RPA leads to the fol-
lowing nonretarded e-e interaction potential Vαβγδ(q) for
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Fig. 5. Lowest order (∼I4) polarisation diagram (above) with
q = k′ + k and exchange diagram (below) with q = k′ − k
contributing to the scattering potentials Va and Vd of equa-
tion (50) respectively. The zig-zag line represents the boson
propagator D0 and the bubble is equal to the conduction elec-
tron susceptibility χ0(q) in the nonretarded approximation.
Small arrows represent conduction electrons spin. Note that
the upper diagram describes a process which does not con-
serve the total pair spin component (sz + s′z) leading to a pair
potential equation (62) which is not rotationally invariant in
spin space. Summation of diagrams of odd order in I2 leads to
Vb and Vc.

the various channels of initial (βδ) and final (αγ) spin
configurations:

Va = V a↓↓,↑↑ = V a↑↑,↓↓

= −χ
−1
0 Γ 2

0

1− Γ 2
0

= −1
2
I2

[
1

∆(1− Γ0)
− 1
∆(1 + Γ0)

]
Vb = V b↓↑,↑↓ = V a↑↓,↓↑

=
I2D0

1− Γ 2
0

= −1
2
I2

[
1

∆(1− Γ0)
+

1
∆(1 + Γ0)

]
Vc = V c↓↓,↑↑ = V c↑↑,↓↓ = Vb

Vd = V d↓↑,↑↓ = V c↑↓,↓↑ = Va. (50)

Here Va(q), Vb(q) with momentum transfer q = k+k′
correspond to the polarisation and Vc(q), Vd(q) with q =
k − k′ to the exchange diagrams of Figure 5. Adding up
all contributions and transforming k → −k in the first
two (a, b) terms one obtains the effective e-e interaction
Hamiltonian where now q = k− k′:

Heff =∑
kk′

[Va(q) + Vc(q)][c†k↑c
†
−k↑c−k′↓ck′↓ + c†k↓c

†
−k↓c−k′↑ck′↑]

+
∑
kk′

Vb(q)[c†k↓c
†
−k↑c−k′↓ck′↑ + c†k↑c

†
−k↓c−k′↑ck′↓]

+
∑
kk′

Vd(q)[c†k↑c
†
−k↓c−k′↓ck′↑ + c†k↓c

†
−k↑c−k′↑ck′↓]. (51)

Defining the effective e-e interaction potential by

Heff =
1
2

∑
kk′,αβγδ

V eff
αβγδ(q)c†kαc

†
−kγc−k′δck′β (52)

we get the explicit effective interaction matrix by compar-
ison with the previous equation, using V± = Va ± Vb and
again defining the state sequence as (↑↑, ↑↓, ↓↑, ↓↓):

1
2
↔
V eff (q) =


0 0 0 V+

0 1
2 (V− + V+) − 1

2 (V− − V+) 0

0 − 1
2 (V− − V+) 1

2 (V− + V+) 0

V+ 0 0 0

 ·
(53)

Comparison with equation (40) shows that interaction
components V eff

↑↑↑↑ etc. are absent due to the fact that
boson absorption or emission always leads to spin flips.
On the other hand there are additional components like
V eff
↑↑↓↓ = Va+Vb = V+ which do not conserve the total pair

spin component stz = (sz+s′z). Thus magnetic exciton ex-
change does not lead to a rotationally invariant effective
pairing potential as in the case of the spin fluctuation
mechanism in Section 4.1. This is a direct consequence of
the presence of a CEF splitting. The decomposition of Veff

into irreducible contributions as previously given in equa-
tion (40) is therefore more involved and will be discussed
below.

The static e-e vertex function Γ ′0(q) = Γ ′0(q) −
N−1

∑
q Γ0(q) is related to the Fourier transform of the

effective exchange interaction JRKKY(q) of pseudo spins
via the the relations

α2〈S〉JRKKY(q) = I2χ′0(q)

Γ ′0(q) =
I2

∆
χ′0(q) =

α2〈S〉
∆

JRKKY(q) (54)

where χ′0(q) was given in equation (4, 49). In addition
the pseudo spins have a superexchange Jff (q) whose con-
tribution in static RPA limit is described by equivalent
diagrams thus leading to a total vertex function

Γ (q) = Γ ′0(q) + Γff (q) =
α2〈S〉
∆

[JRKKY(q) + Jff (q)] ≡ α2〈S〉
∆

J(q). (55)

This result may now be substituted in equation (50).
As mentioned in Section 2 the total exchange function
J(q) will be parametrized by comparison with the experi-
mental exciton dispersion. It has intra-and inter-sublattice
parts JD(q) and JN (q) respectively with J(q) = JD(q) +
JN (q). Absorbing the constant 1

N

∑
q Γ0(q) into a renor-

malized CEF splitting ∆ and replacing ∆ → ∆′ for
the AF ordered case we then obtain, defining ωR(q) =
2∆′ − ω−(q)

∆′[1− Γ (q)] = ∆′ − α2〈S〉JD(q) − α2〈S〉JN (q) ≡ ω−(q)

∆′[1 + Γ (q)] = ∆′ + α2〈S〉JD(q) + α2〈S〉JN (q) ≡ ωR(q).
(56)
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Here ω−(q) is nothing but the excitonic dispersion
branch which becomes soft at the zone boundary Q of the
PMBZ at TN and evolves into the acoustic branch with its
minimum at the new Γ -point of the AFBZ as explained
in Section 3. Note that the energy ωR(q) = 2∆′ − ω−(q)
does not correspond to an excitation branch. Since 2∆′ �
ω−(q) for all realistic cases ωR(q) will never be small and
ωR(q)−1 is regular throughout the AFBZ. Using equa-
tion (56) the effective potentials of equation (58) can now
be written as

Va = −I
2

2

[
1

ω−(q)
− 1
ωR(q)

]
Vb = −I

2

2

[
1

ω−(q)
+

1
ωR(q)

]
· (57)

Inserting this result into the interaction matrix of
equation (53) the possible irreducible pair potentials (i.e.
the eigenvalues Vκ, κ = 0, u, v, w of

↔
V eff ) are given by

V0 = (Va − Vb) = I2 1
ωR(q)

Vu = −(Va + Vb) = I2 1
ω−(q)

Vv = (Va + Vb) = −I2 1
ω−(q)

Vw = (Va + Vb) = −I2 1
ω−(q)

(58)

with the correspondence V0 = V−, Vu = −Vv = −Vw = V+

to equation (53). The pair states obtained as eigenstates
from equation (53) are classified according to their sz =↑↓
(=± 1

2 ) quantum numbers. Later on when the effect of AF
order is considered, a representation with sx = +,−(=
± 1

2 ) may be useful. It is obtained by |+〉 = Ry(π2 )| ↑〉
etc. where Ry = 1√

2
(1− iσy) is a rotation by π

2 around the
y-axis. Therefore we also give the relation between the two
notations for the eigenstates ψκ or ψxκ which correspond
to Vκ, κ = 0, u, v, w:

ψ0 = ψx0 =
1√
2

(| ↑↓〉 − | ↓↑〉)

ψu = −ψxw =
1√
2

(| ↑↑〉 − | ↓↓〉)

ψv = ψxv =
1√
2

(| ↑↑〉+ | ↓↓〉)

ψw = ψxu =
1√
2

(| ↑↓〉+ | ↓↑〉). (59)

Here ψ0 describes singlet pairs. In the spin fluctu-
ation model (ψκ, κ = u, v, w) correspond to the de-
generate triplet pairs. In the present magnetic exciton
model according to equation (58) obviously this degen-
eracy is partly lifted because the basic Hamiltonian equa-
tions (43, 45) is not rotationally invariant in spin space
as a result of the coupling to CEF split localized states.
The triplet is split into a nondegenerate state ψu and a

doublet (ψv,ψw). As a consequence in the present case the
irreducible projector representation for the pair potential
like equation (53) is different. The projectors to the eigen-
vectors which satisfy PiPj = Piδij may be written as

P0 = P x0 =
1
4

(1− σσ′)

Pu = P xw =
1
4

(1− σxσ′x + σyσ
′
y + σzσ

′
z)

Pv = P xv =
1
4

(1 + σxσ
′
x − σyσ′y + σzσ

′
z)

Pw = P xu =
1
4

(1 + σxσ
′
x + σyσ

′
y − σzσ′z). (60)

The projector to the doublet subspace PD = (Pv+Pw)
and to the total triplet subspace P1 = (Pu +Pv +Pw) are
given by

PD =
1
2

(1 + σxσ
′
x)

P1 =
1
4

(3 + σσ′). (61)

Then similar as in equation (40) Veff (q) as mediated
by magnetic excitons (Eq. (53)) may finally be written as

↔
V eff (q) =

I2

ωR(q)
P0 +

I2

ω−(q)
Pu −

I2

ω−(q)
(Pv + Pw).

(62)

There is an intuitively simple interpretation for the
CEF-induced triplet splitting present in this model:
The conduction electrons can scatter from virtual CEF-
excitations ∆ only with their sx (or sy)-component,
therefore the pair states will experience a potential ∼
(I2/∆)(stotx )2 in lowest order which splits the (ψxκ, κ =
u, v, w) triplet into nondegenerate ψxw(stotx = 0) and
ψxu ± ψxv (stotx = ±1) degenerate pair states.

The previously developed theory of magnetic excitons
which explains the experimental observations as shown in
Figure 4 can now be used to calculate the pair potential
from equations (58, 62). However only the qx, qy-averaged
potential is needed for the gap equations as explained in
the next section.

5 The superconducting gap equations

The effective e-e interaction may lead to a superconduct-
ing state with an order parameter given by the gap matrix
(q = k− k′)

∆k
αβ = −

∑
k′γδ

V k−k′

(αβ),(γδ)〈ck′γc−k′δ〉 (63)

which satisfies the m.f. gap equation

∆k
αβ = −

∑
k′γδ

V k−k′

(αβ)(γδ)

∆k′

γδ

2Ek′
tanh

1
2
βEk′ . (64)
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Here we defined V k−k′

(αβ)(γδ) = V k−k′

αγβδ and (αβ), (γδ) =
↑↑, ↑↓, ↓↑, ↓↓ are double spin indices in the notation for
sz-quantisation and Ek are the superconducting quasipar-
ticle energies. The gap matrix may be decomposed in the
canonical way as

↔
∆k = i

3∑
i=0

σiσ2d
k
i (65)

where dk
0 , dk = (dk

u, d
k
v , d

k
w) correspond to the pair

states ψ0, (ψu,ψu,ψv) respectively introduced before. Ex-
plicitly we have the relations in both sz and sx quantisa-
tion notation:

dk
0 =

1
2

(∆k
↑↓ −∆k

↓↑) =
1
2

(∆k
+− −∆k

−+)

dk
u = −1

2
(∆k
↑↑ −∆k

↓↓) =
1
2

(∆k
+− +∆k

−+)

dk
v =

1
2i

(∆k
↑↑ +∆k

↓↓) =
1
2i

(∆k
++ +∆k

−−)

dk
w =

1
2

(∆k
↑↓ +∆k

↓↑) = −1
2

(∆k
++ −∆k

−−). (66)

Using the projector representation equation (62) for
the effective potential and the identity

P0∆k = dk
0

Pκ∆k = dk
κd̂κ (κ 6= 0) (67)

where ∆k = {∆k
(αβ)} is a four component vector acted

on by the 4 × 4 projector matrices of equation (60). We
then obtain the scalar irreducible gap equations (κ =
0, u, v, w)

dk
κ = −

∑
k′

V k−k′

κ Fk′d
k′

κ

Fk =
1
2
Ek tanh

1
2
βEk

Ek = [(εk − µ)2 + |dk
κ|2]

1
2 . (68)

Before solving these equations explicitly we note that
the gap functions can be classified according to the crys-
tal symmetry group which in this case is the orthorhombic
group D2h due to the presence of the AF order parameter
with mQ ‖ x̂. The corresponding irreducible representa-
tions of gap functions can be listed as

dk
0 ∼ cos kz : A1g(Γ+

1 )

dk = (dk
u, 0, 0) ∼ x̂ sin kz : B2u(Γ−2 )

dk = (0, dk
v , 0) ∼ ŷ sin kz : B3u(Γ−4 )

dk = (0, 0, dk
w) ∼ ẑ sin kz : A1u(Γ−1 ). (69)

These representations have even (dk
0 ) and odd

(d k
κ , κ = u, v, w) parity respectively The basis functions

have all odd character with respect to the transformation
k → k ± Q, namely dk±Q

κ = −dk
κ(κ = 0, u, v, w). In

D2h there is no symmetry reason why (dk
v , dk

w) should be
degenerate. In fact we show later that the AF order con-
nected with D2h symmetry will lead to a splitting into
nondegenerate dk

− and dk
+ superconducting states.

5.1 Solution of gap equations for cylindrical symmetry

The explicit solution of equation (68) at this stage cannot
be performed for the real FS of UPd2Al3 which has many
complicated sheets [19,20]. Such an attempt would also
not be compatible with the very simple nonretarded model
potential of equation (58) whose k-dependence is not cal-
culated from the real FS but obtained from parametrizing
the experimental magnetic exciton dispersion. Therefore
we use the simplified model FS according equation (2) rep-
resented by the corrugated cylinder shown schematically
in the inset of Figure 8. The cylindrical symmetry of the
model FS leads to an important simplification of the gap
equations equation (68) which can now be approximated
by a one-dimensional integral equation in the variable kz .
This allows one to continue with an analytical treatment.
Explicitly then

dκ(kz) = −
∑
k′z

V̄i(kz − k′z)dκ(k′z)
∑
k′⊥

tanh β
2E(k′⊥, k

′
z)

E(k′⊥, k′z)

(70)

where k⊥ = (kx, ky), kx = k⊥ cosφ, ky = k⊥ sinφ and φ is
the azimuthal angle in the ab-plane. For the above separa-
tion of variables it is assumed that the φ-dependence of the
order parameter can be neglected, this means we restrict
to representations of the type given in equation (69) and
higher harmonics. In addition for the cylindrical FS sheet
in UPd2Al3 ε(k⊥, σ) depends only on the modulus k⊥.
Therefore only the qx, qy-averaged pair potentials V̄κ(qz)
appear in the gap equation where we define

V̄κ(qz) =
1

4π2

∫
BZ

dqxdqyVκ(qx, qy, qz). (71)

Using the expressions in equation (58) and the calcu-
lated exciton dispersion for UPd2Al3 in Section 3 we ob-
tain these averaged pair potentials as shown in Figure 6.
Because of the singular behaviour of Vκ(q) at the AF-
point Q the absolute value of averaged potentials |V̄κ(qz)|
(κ = u, v, w) show a pronounced maximum at Q=(0,0,π).
On the other hand the averaged singlet pair potential
V̄0(qz) is rather smooth with a flat maximum for qz around
0.4π. This is due to the nonsingular nature of V0(q) as
discussed in Section 4.

The gap equation equation (70) may now be com-
pletely factorized by expanding V̄κ(qz)(qz = kz−k′z) in
lattice harmonics according to

V̄κ(qz) =
∑
m

V̄ mκ cos qz

=
∑
m

V̄ mκ (cosmkz cosmk′z− sinmkz sinmk′z). (72)

Furthermore we may expand the even (κ = 0) and odd
parity (κ = u, v, w) gap functions into

d0(kz)=
∑
m≥0

dm0 cosmkz; dκ(kz)=
∑
m≥1

dmκ sinmkz. (73)
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Fig. 6. qz-dependence of the absolute value of qx, qy-averaged
pairing potentials V̄κ in the PMBZ for even (V̄0 > 0) and odd
(V̄u > 0 and V̄v, V̄w < 0) parity of the gap function. qz = 0
corresponds to the A′-point and qz = π

c
to the Γ point of the

AFBZ in Figure 4 respectively.

The order parameter may now be in general repre-
sented as vectors d0 = {dm0 } and dκ = {dmκ } and the
gap equations for the components obtained from inserting
equations (72, 73) in equation (70) finally can be writ-
ten as

1 = σκN(0)V̄mκ Gm[dκ]

Gm[dκ] =
1
π

∫ π

0

αm(k′z)F [T, k′z,dκ]dk′z

F [T,dκ(k′z)] =
∫ ωc−

0

dξ
tanh 1

2βE(ξ, k′z)
E(ξ, k′z)

· (74)

Here ωc− is the magnetic exciton band cutoff energy,
σκ = −1 for κ = 0 and σκ = 1 for κ = u, v, w. Note
that σκ is due to the different signs for even and odd par-
ity parts in the harmonic decomposition in equation (72).
Furthermore we have for κ = 0:

E(ξ, kz) =

ξ2 +

(∑
n

dnκ cosnkz

)2
 1

2

αm(kz) = cos2(mkz) (75)

and for κ = u, v, w similar equations

E(ξ, kz) =

ξ2 +

(∑
n

dnκ sinnkz

)2
 1

2

αm(kz) = sin2(mkz). (76)
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Fig. 7. Fourier components V̄ mκ of V̄κ(qz) according to equa-
tion (72). dashed line (diamonds): κ = 0, full lines: κ = v, w
(degenerate,triangles) and κ = u (squares). The Fourier com-
ponents with m ≤ 2 which lead to a nonzero Tmcκ in equa-
tion (78) have been designated by arrows. The odd parity (v,w)
component (m = 1) is the most favorable.

At the critical temperature Tc, dκ = 0 and equa-
tion (74) simplifies to

F (Tc) = N(0)
∫ ωc−

0

tanh 1
2βcξ

ξ
dξ = N(0) ln(Aβcωc−)

Gm[0] = ᾱmF (Tc). (77)

Here A = 1.13 and ᾱm is the average of αm(kz) in the
interval [0,π]. One has ᾱm = 1 for κ = 0, m = 0 and ᾱm =
1
2 for κ = 0, u, v, w and m ≥ 1. This leads to the weak
coupling BCS- formula for the transition temperature:

Tmcκ = 1.13(ωc−) exp
(
− 1
ᾱmN(0)|V̄ mκ |

)
· (78)

For Tmcκ > 0 the conditions V̄ m0 < 0 for the even
dm0 (κ = 0,m ≥ 0) singlet and V̄ mκ > 0 (κ = u, v, w,m ≥
1) for odd parity dmκ -states must be satisfied. This differ-
ence in the required sign of the Fourier components V̄ m0
can again be traced back to the decomposition in equa-
tion (72). The Fourier components in equation (72) with
m = 0 − 4 are shown in Figure 7. Within the weak cou-
pling approach the sc phase realised is the one with the
highest Tmcκ, i.e. the highest V̄ mκ > 0 (κ = u, v, w) or
−V̄m0 > 0 (κ = 0) value. From the calculated values in
Figure 7 we notice that the degenerate V̄ m=1

κ=v,w is the most
favorable which is slightly larger than V̄ m=2

κ=u . The former
corresponds to an odd parity doublet

d(kz) = (d1
v sinkz , d1

w sinkz) (79)

with |d1
v| = |d1

w|. It has node lines of the gap at kz =
0. As mentioned before this degeneracy is accidental in
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the present model due to the neglect of AF ordering and
therefore there is no symmetry determined phase relation
between the d1

v and d1
w amplitudes. The second slightly

less favorable odd parity state d2
u sin 2kz is nondegenerate

and has line nodes at kz = 0, π2 ·
An important conclusion from this analysis is that for

the present pure magnetic exciton model the singlet state

d0(kz) = d1
0 coskz (80)

is not stable because V 1
0 > 0 is repulsive instead of attrac-

tive as required in this channel. This is due to the fact that
the potential V̄0(qz) in Figure 6 (dashed line) has its max-
imum not at the PM zone boundary (qz = π) but rather
close to qz = 0.4π. This behaviour can be traced back to
the form of V0(q) in equation (58) which shows that the
denominator 2∆′ − ω−(q) and not the exciton mode en-
ergy ω−(q) which leads to the maximum at qz = π for the
odd parity state potentials V̄κ(qz) at qz = π in the PMBZ.
This result is robust against the details of the exciton ex-
change model.

5.2 Effect of AF order on superconducting gap
equations

In the previous treatment the influence of AF order on the
pair potential was largely neglected. Sofar it only enters
through the renormalized singlet-singlet splitting∆′ in the
magnetic exciton dispersion which is of minor importance.
A much more pronounced effect is due to the competition
of sc pair formation and reconstruction of quasiparticle
states at the FS by AF long range order. This leads to
an important modification of the effective pair potential
for wave vectors close to the AF ordering vector Q. This
is also known from AF phonon mediated superconductors
such as the borocarbides [25,26]. The application of this
idea to the present case is formally similar but more in-
volved because of the more general possible pair states as
compared to conventional electron-phonon singlet super-
conductors treated in the above references. In this section
we show how AF order modifies the magnetic exciton pair
potential of equation (62) and the effect on the sc states
as discussed above.

5.2.1 Transformation to magnetic Bloch states

The AF order parameter

〈Ji〉 = 〈J〉0x̂ cos(QRi) (81)

leads to an additional periodic potential for the conduc-
tion electrons due to Hcf in equation (43) which has twice
the period (2c) of the lattice potential (c). It is given by

Hmf
cf = I0(g − 1)〈J〉0

∑
k

(
c†k+Q↓ck↑ + c†k−Q↑ck↓

)
(82)

and leads to a reconstruction of the conduction band
states (see e.g. Refs. [26,27]) which may be described by a

unitary transformation to the new magnetic Bloch states
of the AF lattice given by

a†k1 = αkc
†
k↑ + βkc

†
k+Q↓

a†k+Q2 = β−k−Qc
†
k↑ + α−k−Qc

†
k+Q↓. (83)

The αk, βk are the real magnetic transformation co-
efficients [25,26] below TN (not to be confused with
uk, vk which transform to the superconducting quasi-
particles below Tc). The effect of AF on the pair
potential equation (62) is included by expressing the
latter with the transformed pair operators Bk =
{akσa−kσ′ , (σσ′) = 11, 12, 21, 22} instead of the pair oper-
ators bk = {ckσc−kσ′ , (σσ′) =↑↑, ↑↓, ↓↑, ↓↓} in the param-
agnetic state. This transformation bk = TkBk is furnished
via the symmetric 4× 4-matrix

Tk =


α2

k αkβk αkβk β2
k

αkβk α2
k β2

k αkβk

αkβk α2
k β2

k αkβk

α2
k αkβk αkβk β2

k

 · (84)

Then the effective pairing Hamiltonian transforms into
(q = k′ − k)

Heff =
1
2

∑
kk′

b†k′
↔
V eff (q)bk =

1
2

∑
kk′

B†k′
↔
V̂ eff (q)Bk (85)

using the projector representation of equation (62) the
effective pair potential may be written as

↔
V̂ eff (q) = Tk′

↔
V eff (q)T †k

=
∑
κ

Vκ(q)Tk′PκT
†
k =

∑
κ

Vκ(q)P̂κ. (86)

As long as k,k′ are far away from the AF Bragg planes
k = ± 1

2Q one has Tk, Tk′ ' 1 and P̂κ ' Pκ still projects
to the eigenstates of equation (59). However close to the

Bragg planes P̂κ 6= Pκ and
↔
V̂ eff (q) and hence the gap

equations will be strongly modified. Explicitly we have

P̂0 = ak′akP0

P̂u = ak′akPu

P̂v = Pv + bk′bkPw + bk′Pvw + bkPwv

P̂w = Pw + bk′bkPv + bk′Pvw + bkPwv. (87)

Here we defined the transfer operators Pvw = P †wv =
|ψv〉〈ψw| between different pair states. this means that AF
order mixes ψk

v , ψk
w states for wave vectors close to the

Bragg planes, contrary to ψk
0 , ψk

u which stay in the same
subspace. The coefficients in equation (87) are related to
the magnetic transformation coefficients via

ak = α2
k − β2

k =
[
1 +

(I〈Sx〉)2

(εk − εk+Q)2

]− 1
2

bk = (1− a2
k)

1
2 = 2αkβk =

I〈Sx〉
|εk − εk+Q|

(α2
k − β2

k), (88)

where I〈Sx〉 = I0(g − 1)〈J〉0.
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5.3 Modified gap equations in the AF state

The above relations enable us to derive the modified sc
gap equations in the presence of AF order. The effective
pairing of equations (45, 86) leads to gap equations anal-
ogous to equation (63) for electrons in magnetic Bloch
states:

∆̂k = −
∑
k′

V̂eff (q)∆̂k′Fk′ . (89)

Multiplication with a projector Pκ from the left and
using the identities Pv Pvw = Pvw, Pv Pwv = 0 etc. we
arrive at the modified gap equations for κ = 0, u:

d̂k
κ = −

∑
k′

[a2
k′Vκ(q)]d̂k′

κ Fk′

Ek = [ξ2
k + dk2

κ ]
1
2

dk
κ = akd̂

k
κ = (α2

k − β2
k)d̂k

κ. (90)

This shows that for the ψk
0 , ψk

u pair states the effective
pair potential in the presence of AF is given by

V̂κ(k− k′) = (α2
k − β2

k)Vκ(k− k′)(α2
k′ − β2

k′) (91)

which vanishes at the Bragg planes k = ± 1
2Q, i.e. states

which are connected by the AF ordering vector do not
contribute to sc pairing. This leads to the well known
depression but usually not destruction of superconduc-
tivity by AF order, see e.g. reference [26]. Far from
the magnetic Bragg planes V̂κ(k − k′) ' Vκ(k − k′).
Furthermore the gap function entering the quasiparti-
cle energy Ek is dk

κ which has an additional zero for
k = ± 1

2Q due to the prefactor (α2
k − β2

k). This factor
does not change sign at k = ± 1

2Q and therefore does
not lead to an additional node line. The modified gap
equations can now be derived in a similar way for κ = u, v:

(
dk
v

dk
w

)
= −

∑
k′

(
Vv(q) ibkVv(q)

−ibkVw(q) Vw(q)

)(
dk′
v

dk′

w

)
Fk′ . (92)

Obviously the two states (dk
v , dk

w) are mixed at
the presence of AF order. According to equation (58)
Vv = Vw ≡ VD and equation (92) can easily be diago-
nalised. One finally obtains the gap equations for the new
eigenstates (κ = +,−):

d̂k
± = −

∑
k′

[(1∓ bk′)VD(q)]d̂k′

±Fk′

Ek = [ξ2
k + dk2

κ ]
1
2

dk
± = (1∓ bk)

1
2 d̂k
± = (1∓ 2αkβk)

1
2 d̂k
±

dk
± =

1√
2

(dk
v ± idk

w). (93)
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Fig. 8. Temperature dependence of gap function amplitudes
d−(T ) (full line) and d+(T ) (dashed line) with AF order effect
included (λAF according to equation (97)). ∆λsc = 4.3 meV is
chosen such that Tc = 1.8 K. dashed-dotted line: AF moment
effect suppressed (λAF ≡0), with the same λsc, the transition
temperature is then T 0

c = 1.27 K. Inset: Schematic view of PM
Fermi surface (FS) described by equation (2) with PM and AF
Brillouin zones indicated. Γ and A′ are the AFBZ and PMBZ
zone centers respectively. States on the FS connected by the
AF ordering wave vector Q are reconstructed by the AF order.
The model FS shows nesting at wavevectors (qx, qy, qx) and
(−qx,−qy, qz +Q).

These equations for ψ+, ψ− pair states are formally
identical to those for ψ0, ψu in equation (90) however with
a different effective pair potential

V̂±(k− k′) = (1∓ bk)
1
2 VD(k− k′)(1∓ bk′)

1
2 · (94)

At the Bragg planes bk ' 1, this implies that the pair
potential V+ for dk

+ is reduced to zero, similar as in the
case κ = 0, u but for dk

− the pair potential V− is enhanced
in this region of k-space, therefore AF order supports the
sc pairing in the dk

− state.

As for the PM case in Section 5.1 we will now con-
sider the simple situation of the FS sheet with cylindrical
symmetry and small dispersion along c shown in the inset
of Figure 8. Then again the gap equations can be decom-
posed into Fourier components which satisfy equation (74)
as in the PM case. However the form factor αm(kz) and
the quasiparticle energy E(ξ, kz) are now different be-
cause they include the effect of AF order. One obtains
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from equations (90, 93)

κ = 0 : αm(kz) = g(kz) cos2(mkz)

E(ξ, kz) =

ξ2 + g(kz)

(∑
n

dnκ cosnkz

)2
 1

2

κ = u : αm(kz) = g(kz) cos2(mkz)

E(ξ, kz) =

ξ2 + g(kz)

(∑
n

dnκ sinnkz

)2
 1

2

κ = ± : αm(kz) = hκ(kz) cos2(mkz)

E(ξ, kz) =

ξ2 + hκ(kz)

(∑
n

dnκ sinnkz

)2
 1

2

.

(95)

Here we defined g(kz) = a2
k = (α2

kz
− β2

kz
)2 and

h±(kz) = (1 ∓ 2αkzβkz). Using equation (88) one can
derive

g(kz) =
cos2 kz

λ2
AF + cos2 kz

h±(kz) = = 1∓ [1− g(kz)]
1
2 . (96)

The functions g(kz), h±(kz) with the parameter
λAF � 1 given below account for the influence of AF
order on the sc gap via the FS reconstruction caused by
Hmf
cf in equation (82). Specifically a finite λAF will split

the degenerate doublet pair state (dk
v , d

k
w) of the PM case.

5.4 Numerical solution of gap equations

We now investigate some of the possible solutions of the
gap equations quantitatively. It must be kept in mind that
this work is based on a model theory which cannot make
absolute predictions for the experimentally realised gap
function. Its main purpose is a better understanding of
the physics of a novel type of pairing mechanism leading
to the magnetic exciton mediated superconductivity.

We first give estimates of the physical parame-
ters involved in the present superconducting model for
UPd2Al3 in addition to those already discussed in Sec-
tion 3 for the magnetic exciton model itself. According
to reference [19] the Fermi level is in the middle of a
peak which we approximate by a square DOS of width
W = 2EF = 0.88 eV. Assuming one conduction electron
per U site we have N(0) = E−1

F = 0.0023 meV−1 for the
model DOS. The small bandwidth W‖ � W of the kz
dispersion is given by W‖ = 4t‖ ' 2EF (Amaxc /Aminc − 1)
where the last approximate relation is obtained assuming
a free electron like dispersion ⊥c and relating the change
of the FS cylinder cross section Ac in the PMBZ along c
to the hopping t‖. The deviation of the ratio Amaxc /Aminc
from 1 characterizes the amount of ‘corrugation’ of the

FS cylinder along c as shown in Figure 8, its value is ob-
tained from dHvA experiments [20] as Amaxc /Aminc ' 1.24
in the AFBZ. This leads to an estimate W‖ = 0.21 eV
or (W‖/W ) = 0.24 consistent with the assumption made
above. The interaction Hcf between localized 5f and con-
duction electrons with strength I = αI0(g−1) has two
competing effects which are characterized by the dimen-
sionless coupling constants

λsc =
N(0)I2

∆
λAF =

(I/α)〈J〉0
W‖

· (97)

Whereas λsc characterizes the strength of the pair po-
tential due to magnetic exciton exchange, λAF is associ-
ated with the effect of AF on the sc pair states. Since both
are determined by the interaction constant I they are not
independent and one has the relation

λAF =
1
2
〈J〉0
α

W

W‖
[N(0)∆]

1
2λ

1
2
sc. (98)

The quantitiesW‖/W = 0.24 and [N(0)∆]
1
2 = 0.12 are

estimated within our model so that only one independent
parameter λsc remains which will be fixed to achieve the
proper Tc = 1.8 K. The solution of the gap equation (74)
for the AF case of equation (95) proceeds by iteration.
As discussed in Section 5.1 the most favorable pair state,
judging from the irreducible potentials in Figure 7 is the
odd parity doublet given by equation (79).

The temperature variation of its sc amplitudes d+(T ),
d−(T ) (i.f. the index m = 1 is suppressed) is shown in
Figure 8 for two cases: (a) neglect of AF order, setting
λAF ≡ 0 arbitrarily, then both representations are acci-
dentally degenerate (b) including the effect of AF with the
proper λAF according to equation (98): the degeneracy is
lifted due to the finite λAF and the nondegenerate dk

−
state describes the true sc phase in the AF background. It
is preferred as compared to dk

+ due to its gap enhancement
factor (1 + bk) in equation (93). The iteration procedure
used for the calculation of dκ(kz) in equation (74) allows
for the appearance of different Fourier components below
Tcκ which correspond to V nκ irreducible potentials which
are smaller than the maximum one with n = m. Their
appearance would lead to a change of the profile of dκ(kz)
as function of temperature. For all cases studied with the
potentials of Figure 7 such a case never appears, therefore
in the quasiparticle energies in equation (95) the summa-
tion over n can simply be replaced by the dominant term
for n = m.

In Figure 9 it is shown how the suppression of Tc and
the splitting of dk

+, dk
− representations evolves as function

of λsc due to the effect of λAF given in equation (96). AF
order renders the dk

− state more favorable. Once dk
− > 0 at

Tc the split-off doublet component dk
+ with its lower tran-

sition temperature will be completely suppressed by the
already finite condensation energy of the dk

− state. There-
fore in the AF background only a single nondegenerate
state

dk
− = d−(T )(1 + 2αkβk)

1
2 sin kz (99)
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Fig. 9. Variation of transition temperature with coupling
strength ∆λsc = I2N(0) for the (v,w) odd parity doublet
states. With AF order effect suppressed ((λAF ≡ 0) Tc’s are
degenerate (dash-dotted line). With effect of λAF (Eq. (97))
included a splitting appears (full and dashed lines). There-
fore in the presence of AF only the nondegenerate d−(kz)
state of equation (99) will be stable at any temperature be-
low T vc = 1.8 K for ∆λsc = 4.3 meV. Inset: wave num-
ber (kz)-dependence of the gap functions d±(kz) and dv,w(kz)
(λAF ≡ 0) at T = 0.05 K. The anomalies at the Bragg plane
1
2
Qz = π

2c
are due to the effect of AF order.

will appear. The kz-dependence of dk
± and dk

(v,w) (λAF ≡
0) is illustrated in Figure 9 (inset). Here ∆λsc = 4.3 meV
(λsc = 0.72), which after equation (98) corresponds to
λAF = 0.018, is fixed to reproduce the physical value for
Tc = 1.8 K for dk

−.

6 A hybrid model including spin fluctuations

It has been the aim of the previous analysis to investigate
a new type of pairing mechanism which is a consequence
of the dual nature of 5f -electron in UPd2Al3. The model
employed in equation (1) as an extreme case without any
repulsion (Ic = 0) between 5f -conduction electrons of
the type given in equation (34). Therefore only the new
pairing mechanism via the exchange of magnetic excitons
is possible which was then studied for its own sake. In
a real 5f -compound one has to take into account also
the quasiparticle Coulomb repulsion (Ic > 0) described
by equation (34) which leads to a conventional spin
fluctuation type part for the total pairing potential. In
the present model approach one cannot decide on a purely
theoretical basis which mechanism is the most important
one. In this last section we therefore study a hybrid model
where both contributions are simply added, neglecting

any cross influence. We investigate the evolution of the
pair potential and favorable sc states as a function of the
ratio ρ = (Ic/I) which controls the relative strength of
these contributions. The pure magnetic exciton model
studied before corresponds to ρ = 0. The two contribu-
tions of equations (34, 43) to the total pair potential
are determined by the RPA static conduction electron
susceptibility χ(q) and the exciton mode energy ω−(q)
respectively. Due to equations (55, 56) they are related via

I2χ0(q) = −[ω−(q) + α2〈S〉J ′ff (q)] + ω0 (100)

with ω0 = ∆′ + I2χ̄, χ̄ = 1
N

∑
q χ(q). Since the superex-

change J ′ff (q) is unknown we restrict to the simplest pos-
sible case assuming J ′ff (q) '0, then χ0(q) is directly de-
termined by the magnetic exciton dispersion ω−(q) up to
a constant ω0 which has to satisfy the constraint

I2χ0(q) = ω0 − ω−(q) ≥ 0. (101)

Then, using equations (38, 58) the total pair potential
of the hybrid model is given by

Vs = I2

[
3
2
ρ2χ(q) +

1
ωR(q)

]
Vu = −I2

[
1
2
ρ2χ(q)− 1

ω−(q)

]
Vv = Vw = −I2

[
1
2
ρ2χ(q) +

1
ω−(q)

]
(102)

where the RPA conduction electron susceptibility of
equation (39) is obtained as

ρ2χ(q) =
(ρI )2[ω0 − ω−(q)]
1− ρ

I [ω0 − ω−(q)]
· (103)

For the hybrid model of equation (102) one can now
calculate the qx, qy-averaged potentials Vκ(qz) as in equa-
tion (71) where the bar will now be suppressed. They are
shown in Figure 10 as function of qz for parameters ω0, ρ
chosen such that equation (101) is fulfilled and χ(q) stays
paramagnetic, i.e. nonsingular. One observes that the sin-
glet potential (Vs) has now also a pronounced maximum
at Q comparable to the potentials Vv,w for the odd par-
ity doublet state. Note that for the hybrid model Vu 6=
−Vv,w and therefore three potential functions are present
in Figure 10 contrary to the situation in the pure magnetic
exciton model of Figure 6. The stability of the singlet sc
state should now be increased as ρ increases. This can
clearly be seen by plotting the relevant Fourier compo-
nents V mκ as function of increasing ρ, i.e. increasing the
spin fluctuation contribution to the pairing. This is done
for the unstable singlet state in Figure 7 (dashed curve,
m = 1) versus the two most favorable odd parity states
(upper arrows in Figure 7) and the result is shown in Fig-
ure 10. For ρ ≥ 0.09 one has −Vs > 0 and the singlet state
becomes possible. For even larger ρ ≥ 0.12 it becomes
more stable than the du(k) (m = 2) odd parity state and
then −Vs rapidly approaches the potentials Vv, w for the
doublet state for the largest value of ρ. At this value the
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Fig. 10. Effective pair potentials (absolute values) for the hy-
brid model for even (0) and odd (u, v, w) parity for ρ = Ic/I =
0.124. Inset: most important Fourier components as function
of model parameter ρ. With increasing ρ (increasing spin fluc-
tuation contribution) the even parity singlet (κ = 0, m = 1)
becomes stable at ρ = 0.097 (first arrow) and then more fa-
vorable than the odd parity u state (second arrow) but stays
less favorable than the (v, w) odd parity doublet up to the
maximum ρ = 0.124.

model χ(q) in equation (101) becomes singular indicat-
ing an AF instability of the conduction electron system.
For the hybrid model with J ′ff (q) = 0 and χ(q) given by
equation (103) the odd parity state is therefore always the
stable one, however the singlet state d0(kz) becomes in-
creasingly favorable as the spin fluctuation part increases.
In principle it is possible that in the general case with the
(unknown) J ′ff (q) included in equation (100) the hybrid
model will prefer the singlet sc state d0(k). Of course, if
we neglect the magnetic exciton part altogether and con-
sider only the isotropic pure spin fluctuation model then
according to equation (38) Vs ≡ V0 = −3Vu, v, w, and pro-
vided χ(q) has the maximum at q = Q, the singlet even
parity sc state d0(kz) = d1

0 cos kz is the stable one.

7 Summary and outlook

In this work a dual model of localised and itinerant 5f -
electrons was studied as a generic model for superconduc-
tivity in uranium-compounds and applied to UPd2Al3.
The dual nature of 5f -electrons in this compound was
concluded from experimental evidence, notably suscepti-
bility and normal state Knight shift measurements. The
localized electrons were assumed to be in a 5f2 configu-
ration split by the CEF into singlet ground and excited
states separated by an energy ∆ = 6 meV. The conduc-

tion electrons form band states whose main FS sheet can
be described by a corrugated cylinder aligned along the
c-axis. Due to RKKY and superexchange interactions the
CEF excitation at ∆ is broadened into a dispersive band
of magnetic excitons which become soft at the Néel tem-
perature TN where an induced AF moment appears in
the singlet ground state. These magnetic excitons where
found in inelastic neutron scattering experiments [10–12]
and a theoretical explanation of their dispersion has been
given within the AF singlet ground state model. Further-
more a comparison with tunneling experiments [17] has
suggested that the exchange of magnetic excitations be-
tween conduction electrons leads to a new type of pairing
mechanism which is responsible for superconductivity in
UPd2Al3. The consequences of this hypothesis have been
analyzed in detail within the dual model. The new mag-
netic exciton mediated pair potential was derived within
a diagrammatic RPA type approach and compared to the
results of the well known spin fluctuation theory pair po-
tential caused by anti-paramagnon exchange. It was found
that the former manifestly violates rotational symmetry
in spin space contrary to the latter which is composed of
spin singlet and triplet contributions due to rotational in-
variance. The new effective pair potential due to magnetic
exciton exchange has a lower symmetry with contributions
from the even singlet, another odd parity nondegenerate
and an odd parity doublet contribution. The projector
representation defining the irreducible pair potentials has
been derived and for the cylindrical FS sheet the effec-
tively 1D gap equations have been solved. The favoured
representation is determined by the largest Fourier coeffi-
cient of the in-plane averaged pair potential. In case of AF
magnetism is excluded it was found that the new mecha-
nism favors the odd parity doublet state which has equa-
torial node lines in the gap function. The singlet state is
generally not favored in the present weak coupling ver-
sion of the magnetic exciton mechanism. The influence of
singlet ground state AF on sc leads to important conse-
quences: The doublet state is strongly split and the stable
sc state is a nondegenerate odd parity state given by equa-
tion (99).

A hybrid model including spin fluctuations has also
been considered. In the simplified case that superexchange
between localized 5f -electrons can be neglected the spin
fluctuation pair potential can also be obtained from the
magnetic exciton dispersion. As expected its admixture
leads to a stabilization of the singlet pair state with node
lines at ± 1

2Q. However within the simplified model the
above mentioned odd parity state remains the sc ground
state. In a more general hybrid model which does not have
a direct connection between the two contributions to the
pair potential an even singlet sc ground state is possible
which is favored for the pure spin fluctuation model of the
pair potential. In this work the thermodynamic signatures
of the proposed and possible gap functions have not been
discussed. Their detailed investigation is an important as-
pect for future work.

Thermal conductivity measurements [28,29] point to
the existence of node lines in the gap in a plane
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parallel to the hexagonal ab plane but so far do not al-
low to give their position ckz along the c axis. Recently it
has been proposed [30,31] that the field-angle dependence
of thermal conductivity gives a unique possibility to deter-
mine the position of the node lines. It has been shown [31]
that the angle dependence should be distinctly different
for an odd parity gap function sin kz with kz = 0 node
line as in equation (79) and the even parity gap function
coskz with node line at kz = π

2 as in equation (80). It is
generally believed that the observation of a Knight shift
below Tc [9,32,33] points to an singlet even parity gap
function as in equation (80) which is not favored by the
present form of the magnetic exciton model. However the
Knight shift is also strongly influenced by the AF ordered
localised moments and the quantitative extraction of the
itinerant part is not unique. Therefore one has to await
the field-angle dependent thermal conductivity measure-
ments to solve the problem of the true node line position
and parity of the order parameter.

The theory developed in this paper investigates the
basic mechanism of Cooper pair formation via the mag-
netic exciton exchange in U-compounds with dual (lo-
calised and itinerant) 5f -electrons. In its context differ-
ences to the conventional spin fluctuation mechanism and
general properties of the nonretarded pair potentials were
analyzed. The complete separation of 5f -electrons into lo-
calised and itinerant parts in the dual model is to some
degree artificial and needs to be refined. Also one cannot
expect fully quantitative predictions for UPd2Al3 from the
present simplified weak coupling approach. Ultimately a
strong coupling theory with a retarded magnetic exciton
mediated pair potential and inclusion of a more realistic
FS is necessary. This will also necessitate a fully numeri-
cal treatment of the gap equations to investigate the new
pairing mechanism for UPd2Al3 and the question of the
most favorable symmetry for the gap function.

The author would like to thank K. Maki, N. Sato, R. Shiina,
A.N. Yaresko and G. Varelogiannis for useful discussions.

Appendix A

In this appendix we give the basic geometry of the con-
ventional unit cells in the direct (Wigner Seitz cell: WS)
and reciprocal (Brillouin zone: BZ) hexagonal lattice for
the discussion of the magnetic exciton dispersion. The BZ
is rotated by 30◦ with respect to the WS cell. The rele-
vant primitive lattice vectors of the direct and reciprocal
lattices are given, respectively, by

a = a

(
1
2
,−
√

3
2
, 0

)

b = a

(
1
2
,

√
3

2
, 0

)
b = c(0, 0, 1) (A.1)

a∗ =
2π
a

(
1,− 1√

3
, 0
)

b∗ =
2π
a

(
1,

1√
3
, 0
)

b∗ =
2π
c

(0, 0, 1). (A.2)

Any wave vector can be written in this basis as q =
ha∗ + kb∗ + lc∗. In reduced units of 1

a and 1
c , q is then

given by

PMBZ : q = 2π
(
h+ k,

1√
3

(h− k), l
)

AFBZ : q′ = 2π
(
h+ k,

1√
3

(h− k),
1
2
l′
)
. (A.3)

For the qz components the relation l′ = 2l − 1 or l =
1
2 (l′+1) holds, i.e. the AFBZ is obtained from the PMBZ
through the shift by an AF wave vector Q = (0, 0, π)
and scaling by a factor 1

2 . The corresponding wave vectors
q ′ = q−Q of the symmetry points of the hexagonal AFBZ
are then given by

Γ : π(0, 0, 0)

M : π
(

1,− 1√
3
, 0
)

K : π
(

4
3
, 0, 0

)
A : π

(
0, 0,

1
2

)
A′ : π(0, 0, 1)

L : π
(

1,− 1√
3
,
1
2

)
H : π

(
4
3
, 0,

1
2

)
·

In the AFBZ the symmetry point A′ is equivalent to
Γ since it is shifted by a reciprocal lattice vector Q.

Appendix B

The single-ion susceptibility tensor u↔(ω) which is a neces-
sary ingredient for the calculation of the magnetic exciton
dispersion from equation (18) is obtained from the gen-
eral linear response expression for two operators A, B in
a system of two levels ε± corresponding to CEF singlet
eigenstates |±〉 in the molecular field:

uBA(ω) = P (T )
[
M+−
BA

∆′ + ω
+

M−+
BA

∆′ − ω

]
P (T ) = 2〈S〉 = tanh

β

2
∆′

Mαβ
BA = 〈α|B̂|β〉〈β|Â|α〉· (B.1)

Here 〈S〉 ≡ 〈Sz〉, ∆′ = ε+ − ε− is the CEF exci-
tation energy of equation (12), α, β = ± refer to the
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mf-eigenstates in the ordered phase (Eq. (11)) and Â =
A − 〈A〉, B̂ = A − 〈B〉. For A, B = Jα (α = x, y, z) the
form of the 3 × 3 dipolar Cartesian susceptibility tensor
u
↔(ω) is too cumbersome for solving the secular equation
for the exciton modes. This may be remedied by perform-
ing a real space rotation (x, y, z)→ (x′, y, z′) around the
y-axis by an angle θr such that it exactly compensates the
effect of the rotation in state space which transforms to
the eigenstates |±〉 of the mf-Hamiltonian equation (11).
In this basis one has

J̃x =
1
2
α

(
−b a
a b

)
J̃y = Jy =

1
2
α

(
0 −i
i 0

)
J̃z =

1
2
α

(
a b
b −a

)
(B.2)

with a = cos 2θ = [1+γ
′2]−

1
2 , b = sin 2θ = γ′a. Performing

the counter- rotation leads to (ur = cos θr, vr = sin θr)

J ′x = urJ̃x − vrJ̃z, J ′y = J̃y, J
′
x = urJ̃x − vrJ̃z (B.3)

defining φ = 2θ this can be written

J ′x =
1
2
α

(
− sin(θr + φ) cos(θr + φ)

cos(θr + φ) sin(θr + φ)

)

J ′y = Jy =
1
2
α

(
0 −i
i 0

)
J ′z =

1
2
α

(
cos(θr + φ) sin(θr + φ)

sin(θr + φ) − cos(θr + φ)

)
· (B.4)

By choosing θr ≡ −φ = −2θ the two transformations
compensate and J ′x = Jx, J ′y = Jy, J ′z = Jz. Therefore in
the rotated (x′, y′, z′)-coordinate system the susceptibil-
ity tensor of the AF ordered two level system is identical to
the same tensor for the paramagnetic case in the original
(x, y, z) hexagonal coordinate system. It has only nonzero
elements for x, y and is given by

u↔′(ω) =
α2〈S〉

∆′2 − ω2

(
∆′ iω
−iω ∆′

)
u
↔−1′(ω) =

1
α2〈S〉

(
∆′ −iω

iω ∆′

)
· (B.5)

This form will be used in the secular equation (20).
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Visser, A.A. Menovsky, Phys. Rev. Lett. 65, 2294 (1990).

4. F. Kromer, R. Helfrich, M. Lang, F. Steglich, C.
Langhammer, A. Bach, T. Michels, J.S. Kim, G.R.
Stewart, Phys. Rev. Lett. 81, 4476 (1998).

5. H. Amitsuka, M. Sato, N. Metoki, M. Yokoyama, K.
Kuwahara, T. Sakakibara, H. Morimoto, S. Kawarazaki,
Y. Miyako, J.A. Mydosh Phys. Rev. Lett. 83, 5114 (1999).

6. Ch. Geibel, C. Schank, S. Thies, H. Kitazawa, C.D. Bredl,
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